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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10297

This paper extends recent research on satellite-based carbon 
dioxide measurement to an easily updated template for 
tracking changes in carbon dioxide concentrations at 
local and regional scales. Using data from the National 
Aeronautics and Space Administration’s Orbiting Carbon 
Observatory-2 satellite platform and a large sample of urban 
areas, a comparison of trend estimation models suggests 
that the template can use a simple model that estimates 
trends directly from satellite data pre-filtered to isolate 
local concentration anomalies. Illustrative applications are 
developed for a long-period trend model and a short-pe-
riod model focused on change in the most recent year. In 
addition, the paper estimates carbon dioxide emissions 
for thousands of urban areas and identifies cities whose 

emissions performance is above or below expectation. 
Although the tracking model is “simple,” it requires soft-
ware and hardware that are beyond the means of many 
interested stakeholders. For this reason, the World Bank’s 
Development Economics Vice Presidency has established 
an open web facility that pre-filters data from the National 
Aeronautics and Space Administration’s Orbiting Carbon 
Observatory-2satellite and publishes monthly mean con-
centration anomalies for all terrestrial cells of a 25-kilometer 
global grid. The website will also publish annual carbon 
dioxide tracking reports for urban areas and provide infor-
mation that links the 25-kilometer global grid cell IDs to 
IDs for urban areas and national administrative units (levels 
0, 1, and 2).

This paper is a product of the Development Research Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at sdasgupta@worldbank.org. 
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1.  Introduction 

The World Meteorological Organization forecasts that the current greenhouse gas (GHG) emissions 
trend will increase global temperature 3-5 degrees C by 2100 (Reuters 2018).  This would far overshoot 
the 2-degree limit pledged by the 2015 Paris Climate Accords (COP 21) and might have a catastrophic 
impact (Steffen et al. 2018; World Bank 2012).  In response, several industrial nations pledged very 
steep emissions reductions at the recent Leaders’ Summit on Climate (April 22-23, 2021).   
 
Unfortunately, these pledges confront a striking information shortfall at the outset: near-total absence 
of directly-measured local and regional GHG data for problem diagnosis, program design and 
performance assessment.  Recently, the advent of satellite-based GHG measurement has greatly 
expanded the potential for empirical assessment.  High-resolution observations of atmospheric GHG 
concentrations are now available from several platforms, including NASA’s OCO-2 and OCO-3 
instruments, the European Space Agency’s METOP-A and TROPOMI (Sentinel-5P) platforms, 
China’s TANSAT and the Japan Space Exploration Agency’s GOSAT and GOSAT-2.  Detailed 
technical assessments of measures from these platforms have verified that they provide useful and 
comprehensive information for global carbon emissions analysis (Weir et al. 2021; Nassar et al. 2021; 
Pan et al. 2021; Wu et al. 2020; Hakkarainen et al.; Labzovskii et al. 2019).   
 
This paper extends recent research on satellite-based measurement to an easily-updated template for 
tracking changes in atmospheric CO2 concentrations at local and regional scales.  Using observations 
from NASA’s OCO-2 platform, we develop the template from the data filtering techniques and 
econometric analysis employed by Dasgupta, Lall and Wheeler (2022).  Our prior work estimates an 
econometric model that relates satellite-based CO2 measures to georeferenced emissions sources.  In 
this paper, we develop and compare two versions of the CO2 tracking template.  The first tracks 
changes in residuals after fitting the econometric model to satellite-based observations, while the 
second version simply tracks changes in the observations themselves.  Using data from thousands of 
urban areas, we find an extremely close correspondence between results for the two versions.  We opt 
for simplicity and select the second version for template development.  We also introduce a technique 
for identifying city-level changes that are distinct from regional changes induced by broader 
atmospheric circulation patterns.  We provide several illustrative applications for urban areas, while 
noting that the same approach could be used for any other areas of interest. 
 
In an additional exercise, we use our regression model results to compute expected emissions from 
urban areas.  The regression residuals identify the directions and relative magnitudes of departures 
from expected values for individual areas.  We convert the residuals to their emissions equivalents 
using high-resolution gridded information from the EDGAR global database (Crippa et al. 2020).  For 
1,306 urban areas with populations greater than 500,000, we find a rough balance between cities whose 
emissions are higher and lower than their expected values.  Converting deviations to percentages of 
expected values, we find that percent deviations are typically greater in absolute value for cities with 
lower-than-expected emissions.  
 
The remainder of the paper is organized as follows.  Section 2 motivates the comparison of tracking 
models by reviewing the econometric model and supporting data from Dasgupta, Lall and Wheeler 
(2022).  Section 3 develops the candidate tracking models and Section 4 compares their results for a 
large sample of urban areas.  Section 5 applies the selected model to illustrative urban cases, while 
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Section 6 computes expected emissions values and deviations from those values for a large number 
of urban areas.  Section 7 summarizes and concludes the paper.  The Appendix describes the World 
Bank’s development of an online platform to support future work.  

 
 
2.  The CO2 Emissions Model 
 

2.1 Model Specification 
 

An extensive body of empirical literature has explored the determinants of growth in CO2 emissions. 
Attention has focused primarily on the drivers of CO2 emissions from fossil-fuel combustion and 
cement production (e.g., Raupach et al. 2007; Jotzo et al. 2012).  Recent research has also estimated 
more precisely the CO2 emissions from fires associated with agriculture and land-use change (Gasser 
et al. 2020; Winkler et al. 2021). However, emissions drivers in this sector have received less attention 
than work on industrial determinants (Sanchez and Stern 2016). For the industrial sectors, most of the 
available estimates are inferred from survey-based activity measures that may be incomplete, 
particularly for developing countries.   
 
This study takes a completely different approach, employing direct CO2 observations from satellites. 
The dependent variable in our model is the atmospheric CO2 concentration above a cell in a global 
grid with 25 km resolution. We employ 25-km grid cells defined by Van der Werf et al. (2017), who 
provide the data on CO2 emissions from fires for this analysis. The dominant component of the 
atmospheric concentration is the global stock of CO2 molecules that have accumulated since the 
Industrial Revolution. The second component is seasonal CO2, reflecting differential absorption and 
release by vegetation over the annual cycle. The seasonal CO2 component is latitudinal, differing by 
hemisphere because the Northern Hemisphere has more plant life than the Southern Hemisphere.   
 
The third component is local CO2 emissions, reflecting the time lag between local emissions of CO2 
molecules and their full dispersion into the global mix. We follow convention by terming this the 
“concentration anomaly” since it measures the local deviation from the global background CO2 
concentration. In our global emissions model, we classify the determinants of local concentration 
anomalies in three categories. The first comprises activities in the most significant CO2-emitting 
industry sectors. The Intergovernmental Panel on Climate Change (IPCC) (Gale et al. 2005) has 
identified four dominant industrial sources of CO2 emissions: (i) power plants, (ii) steel mills, (iii) 
cement plants, and (iv) oil refineries. The second category includes CO2 emissions from agricultural 
and forest fires. The third category comprises population-related emissions other than those directly 
associated with CO2-intensive industrial activity. These include motor vehicle emissions, which are 
not measured reliably at the spatial resolution required for our analysis.1 We would expect traffic 
emissions per capita to increase with income per capita, all else being equal. Population-related factors 
also include CO2 emissions from household heating and cooling, which are not captured by data for 
central power plants.2 The subway component of the model affects population-related emissions by 

 
1 Recent research has used Google Traffic to infer vehicular emissions from high-resolution traffic congestion data for 
some cities (Heger et al. 2018; Dasgupta, Lall, and Wheeler 2021). However, no currently available technology enables 
direct estimation of global vehicular emissions at 25 km resolution. 
2 Household air conditioning is powered by fossil-fired home generators in many hot low-income areas where utility-scale 
power is either nonexistent or unreliable. For a detailed assessment, see Lam et al. (2019). 
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reducing the demand for motor vehicle transport and promoting denser settlements that are more 
easily served by utility-scale energy sources.   
 
We specify the econometric model as follows: 

(1) 𝐶𝑂2𝑖𝑡 =  𝛽0 + 𝛽1 𝐼𝑖𝑡 + 𝛽2𝐷𝐼𝑖𝑡 + 𝛽3 𝐹𝑖𝑡 +  𝛽4𝐷𝐹𝑖𝑡 + (𝛽5 𝑃𝑖𝑡𝐻𝑖𝑡 + 𝛽6 𝑃𝑖𝑡𝐶𝑖𝑡 +

                       
        

           𝛽
7 

𝑃𝑖𝑡𝑌𝑖𝑡) 𝑒𝛽8 𝑆𝑖𝑡(𝐿𝑖𝑡,𝐴𝑖𝑡) +  휀𝑖𝑡.   

Expected signs: β1, β2, … β7 > 0, β8 < 0           
 
For grid cell i in period t, CO2it is the satellite-measured mean CO2 concentration anomaly. Iit stands 
for CO2 emissions from industrial sources; DIit represents wind-displaced industrial CO2 emissions 
from other cells; Fit equals CO2 emissions from agricultural and forest fires; and DFit is wind-displaced 
fire CO2 emissions from other cells. Pit stands for population and Yit represents income per capita. Hit 
and Cit represent heating and cooling degree days, respectively. Sit is the subway impact index, which 
is a function of system scale (L) and age (A); ε is a random error term. 
 
In this equation, the atmospheric CO2 anomaly is related to emissions from industrial sources, fires, 
and non-industrial population sources. Spatially-referenced variables in the model are translated to 
consistent measures by resampling to centroids for our 25-km grid cells. The core model is additive 
because emissions from the three sources contribute separately to the accumulation of CO2 molecules 
in the atmosphere. The anomaly recorded for a grid cell by a satellite platform includes emissions from 
sources within the cell and the “spillover” emissions created by wind displacement from sources in 
neighboring cells. For industry and fires, the model includes both cell-specific emissions (Iit, Fit) and 
wind-displaced emissions (DIit, DFit).   
 
In the population-related component of the model, the marginal impact of population (Pit) is a 
function of heating degree days (Hit), cooling degree days (Cit), and income per capita (Yit). For a 
subway city, their composite effect is conditioned by an exponential function of the scale (Lit) and age 
(Ait) of the subway system. The exponential constrains the multiplier to a range from 1 (no subway: 
Lit = 0, Ait = 0) to 0. The multiplier value should decline with both age and scale, the latter measured 
by the length of operating subway lines.  
 

2.2 Data 
 

Data from several satellite platforms that provide CO2 measures have been collected by various 
instruments over different periods, with different resolutions and observation repeat cycles and widths 
of area coverage along orbital paths (Pan, Yuan, and Jieqi 2021). The data are also accessible in varying 
degrees. Combining observations from multiple sources could present difficulties that are as yet little-
explored. For this exercise, prudence has dictated the choice of one platform, NASA’s OCO (Orbiting 
Carbon Observatory)-2, because it offers open access (JPL/NASA 2021); a long panel of consistently 
measured, daily observations (beginning on September 6, 2014); and the highest spatial resolution 
among the available sources (1.29 × 2.25 km).   
 
The design of OCO-2 supports comparative exercises like our analysis. It follows a sun-synchronous 
near-polar orbit, crossing the equator in ascending mode around 1330 hours local time. This means 
that the OCO-2 observations for our study are collected between 1200 and 1500 local time for all 
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cities in the sample, providing a consistent mid-day activity benchmark for comparing CO2 
concentration anomalies.3 OCO-2 has an observation repeat time of 16 days. We have downloaded 
georeferenced measures of XCO2 (the column-averaged dry air mole fraction of CO2). 
 
We filter the XCO2 data for local concentration anomalies, or differences between observed and 
background CO2 at each point. We calculate background CO2 using the methodology of Hakkarainen 
et al. (2019), which incorporates both temporal and geographic elements. As Hakkarainen notes, the 
available data are insufficient for estimating daily medians at resolutions higher than 10 degrees of 
latitude. We compute the daily median XCO2 for each 10-degree latitude band and linearly interpolate 
the result to each OCO-2 observation with 1-degree resolution. Following Hakkarainen, we use the 
median as the representative value because it is not skewed by extreme observations. We subtract this 
background value to compute the local anomaly for each observation. Then we compute monthly 
mean values of concentration anomalies for the 25-km grid cells in our database.  
 
We use georeferenced facility-level global databases to obtain capacity measures and technology 
specifications for power plants (Byers et al. 2021), steel mills (GEM 2021), cement plants (McCaffrey 
et al. 2021), and oil refineries (Auch 2017). We convert capacity measures to annual CO2 emissions 
using standard emissions factors for power production by fuel source (USEIA 2021), steel mills 
(World Steel Association 2021), cement (IEA 2020), and refineries (Jing et al. 2020). Van der Werf et 
al. (2017) provide monthly estimates of carbon emissions from agricultural and forest burning at 25 
km resolution.   
 
Mistry (2019) has provided global estimates of monthly heating and cooling degree days at 25 km 
resolution.4 We compute population at 25 km resolution by aggregating data from CIESIN (2021) at 
5 km resolution. Monthly estimates are interpolated from data provided for 2010, 2015, and 2020. We 
use two sources to construct our georeferenced measure of income per capita. From the G-Econ 
database (Nordhaus et al. 2006), we obtain GDP per capita in 2005 purchasing power parity for a 
global grid with 100 km resolution. Each grid cell is assigned to its geographically dominant country 
by G-Econ. For each cell in a country, we compute the ratio of cell GDP per capita to the national 
mean for all cells. We merge the results with annual UN estimates of GDP per capita in constant $US 
2015 (UN 2021), and use the cell ratios to estimate annual GDP per capita for each cell. We resample 
these cells to 25 km for compatibility with the rest of our database. 
 
We draw our subway data from two sources. The first is a global subway survey by Turner and 
Gonzalez-Navarro (2018), which includes 137 systems installed prior to 2011.5 The survey includes 
digital subway maps at five-year intervals from 1930 to 2010.  The second source is our own survey 
of 55 subway systems installed since 2010. We have constructed digital maps for these systems using 

 
3 CO2 measurement during the full daily activity cycle will improve as systems like OCO-3 observe each area at more 
widely varying times. 
4 Mistry’s data terminate in December 2019. We extend the domain for regression analysis by computing monthly means 
for each 25 km cell using the data for 2014–19.  
5  Gendron-Carrier et al. (2020) provide the following definition: “These data define a ‘subway’ as an electric powered 
urban rail system isolated from interactions with automobile traffic and pedestrians. This excludes most streetcars because 
they interact with vehicle and pedestrian traffic at stoplights and crossings, but underground streetcar segments are counted 
as subways. The data do not distinguish between surface, underground, or aboveground subway lines as long as the 
exclusive right of way condition is satisfied. To focus on intraurban subway transportation systems, the data exclude heavy 
rail commuter lines (which tend not to be electric powered). For the most part, these data describe public transit systems 
that would ordinarily be described as ‘subways’, e.g., the Paris metro and the New York city subway, and only such systems.” 
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information from OpenStreetMaps (OSM 2021). We overlay the digital subway maps on our 25 km 
grid and compute the total length of subway lines in each grid cell and year. Both subway age and line 
length measures are highly right-skewed, so we apply the inverse hyperbolic sine transformation prior 
to estimation.6  
 

2.3 Accounting for Wind Displacement of CO2 Emissions 
 
Space-based observations detect higher CO2 concentrations over emissions sources because 
atmospheric diffusion is not instantaneous. As the prevailing winds displace emissions from their 
sources, deviations from background concentrations persist for some time. City-level or plant-level 
estimates have commonly employed measures of wind direction to model these effects (Nassar et al. 
2017; Wu et al. 2020; Ye et al. 2020). We replicate this exercise at global scale, using ERA5 monthly 
wind direction data for all grid cells in the database (Hersbach et al. 2019). For emissions from each 
grid cell, we determine the wind-directed path across neighboring cells. We compute monthly wind 
bearings at 0.25◦ resolution from 10-m u and v components and then resample to our 25 km grid.7 
Wind paths are calculated in sequence. For each origin cell (A) in the sequence, the destination cell (B) 
is determined by the wind bearing in cell A. Using each grid cell as a source, we determine the 
sequential path across nearby cells through 20 iterations.   
 
Theory provides no guidance on local atmospheric persistence as wind displacement proceeds, so we 
address the issue empirically. In preliminary regression experiments, we perform a grid search across 
two variables. The first is the duration decay function, modeled as the inverse of the iteration sequence 
number raised to a power that varies in increments of 0.1 between 0 and 2.0. The second is the number 
of iterations, which varies from 1 to 20. Our grid search yields best fits for decay and iteration 
parameters of 1.0 and 10, respectively.   
 
Using these parameters, we incorporate wind displacement effects as follows. For each year and month, 
we use our industrial and fire emissions data to compute total CO2 emissions separately for industry 
and fires in each grid cell. We route these emissions across nearby cells through 10 sequential iterations, 
identifying the destination cells by iteration. Once this process is complete for all cells in the grid, we 
proceed cell-by-cell. For each cell, we add across observations for displaced CO2 from every other cell, 
with separate totals by iteration step. We weight these totals for industry and fire CO2 by the inverse 
iteration step number (which incorporates the decay function). Next, we add across the weighted totals 
to obtain the overall decay-weighted totals for wind-displaced CO2 in each cell. These are the variables 
DI and DF in the econometric model (equation [1]). 

 
 

  

 
6 We use the IHST rather than the logarithmic transformation because most of the observations in the data set are zeros 
(see Burbidge, Magee and Robb (1988) and Layton (2001)). 
7 The bearing calculation formula can be viewed at https://www.movable-type.co.uk/scripts/latlong.html.  

https://www.movable-type.co.uk/scripts/latlong.html
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2.4 Model Results 

 
Our econometric results are presented in Table 1. The table includes results for alternative estimators 
that incorporate different assumptions about the structure of the stochastic error term (Ɛit) in the 
model.  These techniques produce the same point estimates for model parameters, but their differing 
estimates of standard errors (and the accompanying t-statistics) may lead to very different inferences 
about the statistical significance of model variables.  We replicate the point estimates in columns (1) – 
(3) to aid interpretation of the t-statistics.  We include results for standard nonlinear (NL) regression, 
NL with robust standard errors (SE) and NL with SE adjusted for 3,074 clusters defined by level-1 
administrative units (states, provinces, etc.) for the 190 countries in the regression database.  

As the table shows, all results have the expected signs.  The mean anomaly for satellite-observed CO2 

concentrations in a 25-km grid cell is positively related to direct emissions from industry and fires; 
wind-displaced emissions from industry and fires in neighboring areas; and population-related 
emissions.  The marginal impact of population is positively related to heating needs (heating degree 
days), cooling needs (cooling degree days) and income per capita, and declines with the interaction of 
subway length and scale.  All variables meet classical significance tests in all three regressions, with the 
exception of cooling degree days in the cluster-adjusted regression.   
 

3.  Alternative Templates for CO2 Emissions Tracking 

As noted in the introduction, recent research indicates that satellite-based observations can support 

an objective, spatially-referenced system for tracking CO2 trends in local areas and regions.  Pre-

filtering by the method of Hakkarainen et al. (2019) or similar methods enables measurement of CO2 

concentration anomalies -- the locally determined components of atmospheric concentrations.  

Temporal considerations are also important because satellite-based measurements, like observations 

from ground-based monitors, include random components that hinder short-period trend 

identification.  At the present state of the art, trend estimates for periods shorter than a year seem 

problematic.   

 

  



 

8 
 

Table 1:  Determinants of CO2 concentration anomalies 

Dependent Variable:  XCO2 Anomaly (parts per billion) 

 

  
     NL NL (Robust) NL(Cluster)a 

    
Industry CO2 Emissions 0.277*** 0.277*** 0.277*** 

  [‘000 Tons] (26.19) (18.85) (9.88) 

    
Industry CO2 Wind-Displaced Emissions 0.275*** 0.275*** 0.275*** 

  [‘000 Tons (Weighted)] (44.59) (31.60) (13.82) 

    
Fires CO2 Emissions 0.359*** 0.359* 0.359* 

   [‘000 Tons] (24.79) (2.35) (2.03) 

    
Fires CO2 Wind-Displaced Emissions 0.573*** 0.573*** 0.573*** 

  [‘000 Tons (Weighted)] (61.85) (8.64) (4.46) 

    
Population [‘000]  5.362*** 5.362*** 5.362*** 

  x Heating Degree Days (69.53) (17.25) (6.18) 

    
Population [‘000] 0.398*** 0.398*** 0.398 

  x Cooling Degree Days (5.48) (5.29) (1.32) 

    
Population [‘000] 13.54*** 13.54*** 13.54*** 

  x Income Per Capita [$US ‘000] (24.45) (15.94) (3.75) 

    
IHSTb [Subway Scale] +  IHSTb [Subway Age]  -0.193*** -0.193*** -0.193*** 

  [Scale:  Track Length in km] (-37.48) (-22.29) (-10.51) 

    

Constant -193.4*** -193.4*** -193.4*** 

 (-192.01) (-153.66) (-10.32) 
 
Observations 1,961,754 1,961,754 1,961,754 
 
 

a GADM (2021) Level 1 Administrative Divisions (States, Provinces)  
b IHST:  Inverse hyperbolic sine transformation 
 
t statistics in parentheses  

* p<0.05  ** p<0.01  *** p<0.001   
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At temporal resolutions of one year or greater, it may be useful to augment the Hakkarainen technique 

with a second filter based on an econometric model like (1) above.  The model relates local CO2 

concentration anomalies to local emissions from industry, fires and non-industrial population sources.  

Model parameters provide estimates of characteristic marginal relationships between local emissions 

and satellite-recorded concentration anomalies, while model residuals measure the deviations of local 

anomalies from their expected values.  In principle, model estimation could be viewed as a useful post-

Hakkarainen filter, with trends in model residuals used for tracking changes in local CO2 emissions 

intensities.  However, the present case is complicated by the presence of both static and dynamic 

variables in the model.  The industry components are basically fixed effects because they are derived 

from fixed plant capacities, not variable outputs.  Among the non-industrial components, population, 

income per capita and the subway variables are interpolated from observations over intervals of a year 

or longer.  The only variables with one-month periodicity are fires, heating degree days and cooling 

degree days.  Under these conditions, it is not clear whether the econometric post-Hakkarainen filter 

adds significant value to an emissions tracking analysis. 

We test the filtering utility of econometric model estimation with data for 6,142 Functional Urban 

Areas (FUAs) with populations greater than 100,000, as defined by Schiavina et al. (2019).  Our 

exercise controls for potential biases introduced by limited sampling within FUAs.  Although the 

OCO-2 satellite platform provides the best available database, its coverage for our 25-km grid cells is 

limited by its 16-day repeat cycle, relatively narrow observation track, and the frequent occurrence of 

cloud cover over some areas.  Within an FUA, typical concentration anomalies may differ substantially 

across grid cells.  To cite one possible consequence, a naive trend analysis could generate spuriously-

positive results in cases where early-period observations are more numerous in lower-anomaly cells 

and later observations are more concentrated in higher-anomaly cells.  To test for this potential source 

of bias, our exercise includes regressions with dummy variable controls for grid cells.   
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For each FUA (j), we estimate the following tracking models: 

CO2 Models 

(2) 𝐶𝑂2𝑖𝑡𝑗 =  𝛾0𝑗 + 𝛾1𝑗𝑡 + 휀𝑖𝑡𝑗 

(3) 𝐶𝑂2𝑖𝑡𝑗 =  𝛾0𝑗 + ∑ 𝜌𝑖𝐷𝑖
𝑁𝑗

𝑖=1
+ 𝛾1𝑗𝑡 + 휀𝑖𝑡𝑗 

Residuals Models 

(4) [𝐶𝑂2𝑖𝑡 − 𝐶𝑂2̂𝑖𝑡]𝑗 =  𝛽0𝑗 + 𝛽1𝑗𝑡 + 휀𝑖𝑡𝑗 

(5) [𝐶𝑂2𝑖𝑡 − 𝐶𝑂2̂𝑖𝑡]𝑗 =  𝛽0𝑗 + ∑ 𝜃𝑖𝐷𝑖
𝑁𝑗

𝑖=1
+ 𝛽1𝑗𝑡 + 휀𝑖𝑡𝑗 

where, for grid cell i in month t: 

CO2it = Mean CO2 anomaly (after pre-filtering by the method of Hakkarainen et al. (2019)) 

𝐶𝑂2̂𝑖𝑡 = Prediction from model (1) above 

Di = Dummy variable for grid cell i8 

t = Time from initial period in months 

εit = Random error term 
 

For an FUA, changes in the CO2 concentration anomaly over the sample period are judged from the 

sign, size and statistical significance of 𝛾1�̂� and 𝛽1�̂�. 

 

4.  Results for Tracking Models 

For model evaluation, we select the 507 urban areas with populations greater than 100,000 that have 
sufficient observations to yield 60 degrees of freedom after accounting for the number of dummy 
variable controls in equations (3) and (5).9  All models are estimated for the period September 2014 to 
October 2021.  We are particularly interested in testing the efficacy of (2), the simplest possible 
tracking model, which is estimated directly from the pre-filtered data with no grid cell dummy variables 
or econometric-model-based controls for local emissions sources. Our tests are performed for the 

change parameters 𝛾1�̂� and 𝛽1�̂�. 

Table 2 displays correlation coefficients between change parameters, ordered by structural “distance” 
from model (2).  We focus on column (2), which tabulates correlation coefficients for model (2).  They 
are all very high, declining slightly from 0.99 to 0.97 for (5), the most structurally-distant model, which 
includes filtering with econometric residuals and dummy variable controls for grid cells.  Figure 1 
displays the accompanying point scatter for model (2) vs model (5), while Table 2 presents the 
associated regression results.  
  

 
8 No subscript j is needed because grid cells are uniquely assigned to FUAs. 
9 The familiar classical 95% significance criterion is t=2.00 with 60 degrees of freedom for estimation. 
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The results in Tables 2 and 3 and Figure 1 strongly suggest that the simplest model (2) is sufficient for 
tracking trends in local concentration anomalies.  This is good news for interested global stakeholders, 
who can track areas of interest in two simple steps: (1) match the areas to grid cells in the 25 km 
Hakkarainen-filtered database of concentration anomalies; (2) estimate model (2) for each area.    
 

5.  Illustrative Applications 

5.1 Long- and Short-Period Tracking Models 

We illustrate the methodology with two tracking models for urban areas.  The first is (6), reproducing 

(2) above, which provides trend estimates for an extended period.  While these multi-year trends 

provide useful information, they may lack the immediacy needed to catalyze local action.  The second 

model (7) contributes by estimating the size and significance of changes in the most recent year.  

Technically, (7) replaces the trend term in (2) with a dummy variable (DF) for observations in the final 

year.   

Table 3:  Regression results 

 Β1 (Model 5)  
  

γ1 (Model 2) 0.974*** 

 (88.10) 

  
Const. 0.0906 

 (1.05) 

  
R2 0.94 

N 507 

  

t statistics in parentheses 

* p<0.05 ** p<0.0 *** p<0.001 

 

Figure 1:  Β1 (model 5) vs γ1 (model 2) 
 

 

Table 2:  Correlation coefficients for model parameters (N=507) 

  (2)       (3)       (4)       (5) 
Model Parameter γ1     γ1      Β1       Β1 

(2) γ1 1.00    
(3) γ1   0.98 1.00   
(4) Β1 0.98 0.97 1.00  
(5) Β1   0.97 0.98 0.98 1.00 
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(6) 𝐶𝑂2𝑖𝑡𝑗 =  𝛾0𝑗 + 𝛾1𝑗𝑡 + 휀𝑖𝑡𝑗 

(7) 𝐶𝑂2𝑖𝑡𝑗 =  𝛾0𝑗 + 𝛿1𝑗𝐷𝐹 + 휀𝑖𝑡𝑗 

 

5.2 Notes on Interpretation 

In the following section, we report urban trend results for September 2014 – December 2021 and 

dummy-variable results for two five-year periods:  January 2015 – December 2019 and January 2017 

– December 2021.  Before presenting the results, we believe that some interpretive notes are warranted.  

First, we offer a caveat about viewing long- and short-period differences across urban areas as 

indicators of differential performance, because “performance” implies intentionality on the part of 

public or private actors.  However, even highly-significant changes in local concentration anomalies 

may reflect non-intentional factors such as changed agricultural practices, blight-induced forest 

degradation, or additional emissions from traffic congestion during periods when mass transit systems 

are installed.  Measurement anomalies may also intrude, particularly for model (7) because it focuses 

on relatively short-run changes.10  To summarize, it may be more useful to view tracking results as 

guides to detailed local assessments rather than as performance indicators.   

A note about measurement units is also warranted.  In Dasgupta, Lall and Wheeler (2022), we convert 

concentration anomalies to emissions estimates using the overall ratio of total global CO2 emissions 

(drawn from standard sources) to the total for all grid squares of concentration anomalies predicted 

from the parameters of our econometric model.  This enables us to perform a distribution of predicted 

CO2 emissions across all terrestrial cells of the 25 km global grid.  However, we have little confidence 

in our current ability to infer changes in emissions volumes from directly-observed changes in local 

anomalies that are not linked to identifiable ground sources.  For this reason, our trend estimation 

exercise operates solely with concentration anomalies.  This has no practical consequence, since the 

results provide readily-comparable change estimates.  

5.3 Tracking Data 

We estimate models (6) and (7) for 1,799 functional urban areas (FUAs) whose data provide at least 

30 degrees of freedom for estimation. 11   Table 4 enumerates the outlying observations that are 

removed prior to estimation.  Observations with standardized z-values greater than 5.0 have been 

identified as outliers.12  As the table shows, 1,761 of 1,799 FUAs have no outliers.  Single outliers have 

been removed for 35 FUAs, 2 outliers for 2 FUAs and 3 for 1 FUA.   

 
  

 
10 See particularly Weir et al. (2021) for a useful discussion of potential effects from year-to-year variability caused by 
differences in atmospheric circulation.  We address this issue in Section 5.5.  
11 The sample is much larger than the sample used in Section 4 because models (6) and (7) do not absorb degrees of 
freedom with dummy variable controls for grid cells. 
12 The z-value of an observation is its distance from the mean, measured in standard deviations. 
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Trends 
 

In each case,  
 
 
 
 

Model estimation yields t-statistics for results classification by degree of significance.  We group urban 
areas into four categories by significance level:  p>.05 (no significant change at 95% confidence); 
p≤.05 (95% confidence); p≤.01 (99% confidence) and p≤.001 (99.9% confidence). 
 
Figure 2 illustrates this classification for selected urban areas with negative and positive trends at 
different levels of significance for the period 2014 – 2021.13  Each graph includes the regression line 
(equivalent to model (6)) through the observations.  The graphs for the non-significant group have 
been chosen for FUAs with t-statistics near 1.0.  The illustrations highlight the need for statistical 
analysis, given the role of random variation in satellite-based measurements.  Of course, the same is 
true for ground-based measurements (e.g. Chakraborty et al. 2008). 
 

5.4 Tracking Results: FUA Trends, 2014 - 2021 
 
Table 5 summarizes our results for trend equation (6).  Our sample comprises 1,799 urban areas with 
30 degrees of freedom or more during the period 2014 - 2021.14  Of these, 272 have significant 
decreases in local concentration anomalies and 108 have significant increases.  Overall, 380 of 1,799 
cities (21.1%) have significant changes during the 8-year period.  Table 6 distributes the changes across 
regions, showing Asia with a disproportionate share of increases and the other regions with 
disproportionate shares of decreases.  Figure 3 maps the same information, showing that within Asia, 
substantial portions of the decreases and increases are accounted for by India and China, respectively.    
 
  

 
13 Scaling on the y-axis varies across cases because observations vary over different ranges. 
14 FUAs in the database have populations of 50,000 or more. 

Table 4:  Outlier observations removed 

Outliers 
(z>5) FUAs 

0 1,761 

1 35 

2 2 

3 1 

  

Total 1,799 
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Figure 2:  Trends in monthly concentration anomalies, 2014 – 2021 (ppm) 

                              Negative Trends                                                             Positive Trends 

   p≤.001              Vila Velha, Brazil                                                                Naples, Italy 

 

 

 

 

 

 

 

 

 

.01<p≤.05                 Dhaka, Bangladesh                                                                Osaka, Japan 

 

 

 

 

 

 

 

 

 
Not Significant      Nice, France                                                                        Jinzhou, China                   
 (t≈1.0)  
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Table 5: Time trends for FUAs, 2014 – 2021* 

Dependent variable:  Local CO2 Anomaly (ppb) 

 Trend  

Significance Level Decrease Increase Total 

Not Significant 804 615 1,419 

   .05 151   72   223 

   .01   87   27   114 

  .001   34    9     43 
    Total Significant 272 108   380 

    

               Total 1,076 723 1,799 

*  FUAs with degrees of freedom ≥ 30 

 

Table 6:  Regional distribution of FUA anomaly trends, 2014 – 2021 * 

              [Count / Column Pct] 

Region Decrease Increase Total 

Africa 32 9 41 

 (11.8) (8.3) (10.8) 

Americas 72 21 93 

 (26.5) (19.4) (24.5) 

Asia 86 58 144 

 (31.6) (53.7) (37.9) 

Europe 75 20 95 

 (27.6) (18.5) (25.0) 

Oceania 7 0 7 

 (2.6) (0.0) (1.8) 

    
Total 272 108 380 

* Column percents in parentheses   

 

 



 

 
 

Figure 3:  Functional Urban Areas:  Trends in local concentration anomalies, 2014 - 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

5.5 Accounting for Atmospheric Circulation 

Although the Hakkarainen filter removes annual and seasonal changes from CO2 concentrations, it 

does not account for region-scale changes in atmospheric circulation that can alter measurements by 

several parts per million, even if local emissions remain constant (Weir et al. 2021).  By implication, 

some of our FUA trend results may reflect regional atmospheric circulation effects rather than changes 

in local emissions.  We test for this effect by creating two groups within 100 km of each FUA centroid:  

grid squares inside the FUA and those lying outside.  If regional circulation plays an important role, 

then trend results should be very similar for the two groups.  Formally, we estimate separate 

regressions for 100-km-radius grid squares inside (I) and outside (O) of FUA j: 

(8) Inside Regression: (2I) 𝐶𝑂2𝑖𝑗𝑡𝐼 =  𝛾0𝐼 + 𝛾1𝑗𝐼𝑡 + 휀𝑖𝑡𝑗𝐼 

(9) Outside Regression: (2O) 𝐶𝑂2𝑖𝑗𝑡𝑂 =  𝛾0𝑂 + 𝛾1𝑗𝑂𝑡 + 휀𝑖𝑡𝑗𝑂 

The relevant null hypothesis holds that atmospheric circulation explains a significant result for γ1jI.  

The null hypothesis is rejected if:  

sign(𝛾1𝑗𝐼) ≠ sign(𝛾1𝑗𝑂) or 

p(𝛾1𝑗𝐼) ≤ p(.05); p(𝛾1𝑗𝑂) > p(.05)  

To summarize, regional atmospheric circulation is rejected as the source of a significant change in an 

FUA concentration anomaly if the outside change parameter has the opposite sign from the inside 

parameter and/or the inside parameter is significant while the outside parameter is not.   

Table 7 provides evidence for 335 FUAs from our estimation sample that have populations greater 

than 100,000 and inside change parameters with p≤.05.  Among the corresponding outside change 

parameters, 92 (27.5%) have sign reversal (sign( 𝛾1𝑗𝐼 ) ≠ sign( 𝛾1𝑗𝑂 )).  Among the 243 outside 

parameters that do not have sign reversal, 136 (56.0%) are not significant at 95% confidence.  In 

summary, the null hypothesis is rejected for 228 (92 + 136) (68.1%) of the 335 urban areas in the 

sample.   
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Table 7:  FUA concentration anomaly trends: inside/outside test results 

                (p(𝜸𝟏𝒋𝑰) ≤ p(.05); FUAs with populations > 100,000) 

 

Conditions for Rejection of H0:  sign(𝛾1𝑗𝐼) ≠ sign(𝛾1𝑗𝑂) or p(𝛾1𝑗𝐼) ≤ p(.05); p(𝛾1𝑗𝑂) > p(.05)  

Sign Reversal Count Percent 

Yes 92 27.5 

No 243 72.5 

Total 335  

   
If No Sign Reversal:   

Significance (95%)   

Yes [p(𝛾1𝑗𝑂) ≤ p(.05)] 107 44.0 

No [p(𝛾1𝑗𝑂) > p(.05)] 136 56.0 

Total 243  

   
Atmospheric Circulation 
Hypothesis   

Accepted 107 31.9 

Rejected 228 68.1 

 Total 335  
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Table 8 incorporates this factor, presenting percent changes in CO2 concentration anomalies for 83 

urban areas with populations greater than 100,000, trend results significant at p≤.01, and absence of 

general circulation effects.15  The table reveals substantial geographic diversity, with 44 countries 

represented.  The United States has 13 entries, followed by India (9), the Russian Federation (5), China 

(4) and South Africa (4).  Table 9 shows that cities with decreasing concentration anomalies outnumber 

cities with increasing anomalies in all regions.  At the same time, African and European cities have 

disproportionate decreases, American cities have disproportionate increases, and Asian cities are about 

equally represented.  Overall, 71% of the cities have decreasing trends and 29% have increasing trends. 

5.6 Short-Period FUA Changes  
 
Model (7) estimates the size and significance of final-year deviations from typical concentrations in 

previous years.  For this illustration, we employ rolling five-year time series for urban areas.  The 

change indicator is 𝛿1𝑗 , the parameter for the final-year dummy variable in model (7).  Figure 4 

provides illustrations for six urban areas during the period 2017-2021. 16   Warsaw and Orlando 

represent the highest confidence class (p≤ .001), with Warsaw concentration anomalies in 2021 

significantly below the five-year line and those of Orlando significantly above.  The results for 

Hengyang/Mumbai (p≤.05) meet standard classical significance standards but are somewhat less 

robust, because estimated final-year deviations are smaller and/or observational variance is larger than 

in the most robust cases.  Casablanca and Bukhara have decreases and increases, respectively, but 

neither is significant by classical standards.  

Tables 10 and 11 summarize our results for five-year periods ending in 2019 and 2021, respectively.17  

The patterns of statistical significance and negative/positive distributions are similar for the two 

periods; significant changes are identified for 225 urban areas in 2015-2019 and 235 areas in 2017-

2021.  

 

  

  

 
15 We calculate percent changes after subtracting each city’s minimum concentration anomaly from all of its 
observations.  This permits percent calculations by transforming negative anomalies to positive values.  For each city, we 
use its regression result for model (6) to predict concentrations in the first and last years.  These predictions are used to 
calculate percent changes. 
16 Again a cautionary note:  y-axis scaling differs substantially across cases. 
17 The results are for urban areas with at least 30 degrees of freedom for estimation. 



 

 
 

 

 

  

Table 8:  Trends in CO2 concentration anomalies, 2014 – 2021  

                (population ≥ 100,000; p ≤ .01; atmospheric circulation effects absent) 

City Country % Change City Country % Change 

Shivamogga India -38.2 Matala Angola 61.0 

Trier Germany -32.7 Marrakesh Morocco 53.8 

Lublin Poland -31.5 Haldwani India 49.5 

Cherkasy Ukraine -31.5 Dimitrovgrad 
Russian 
Federation 49.0 

Maputo Mozambique -30.8 Hachinohe Japan 46.7 

Balurghat India -30.6 Winston-Salem United States 44.8 

Vientiane Lao PDR -30.5 Eugene United States 42.0 

Bindi Pakistan -30.1 Ho Chi Minh City Vietnam 42.0 

Valence France -29.9 Huelva Spain 41.7 

Izmir Türkiye -29.4 San José Costa Rica 39.0 

Durban South Africa -28.7 Sora-myeon Korea, Rep. 32.5 

Tiraspol Moldova -28.5 Orlando United States 32.1 

Le Tampon Reunion -28.5 Van Türkiye 28.9 

Adama Ethiopia -28.4 Bucharest Romania 26.2 

Fayetteville United States -28.2 Ahwaz Iran, Islamic Rep. 26.2 

Odense Denmark -27.8 Puerto Vallarta Mexico 22.8 

Jabalpur India -27.5 Lviv Ukraine 21.6 

Río Piedras [San Juan] Puerto Rico -26.5 Portsmouth United Kingdom 21.4 

Ulyanovsk 
Russian 
Federation -25.6 Florianópolis Brazil 20.6 

Cuernavaca Mexico -25.5 Daegu Korea, Rep. 18.9 

Jerez Spain -24.8 Hangyulu China 14.8 

Ciudad del Este Paraguay -24.5 Appleton United States 14.5 

Irkutsk 
Russian 
Federation -24.5 Jacksonville United States 14.4 

Ogden United States -24.4    

Chenzhou China -24.3    
Yicheng China -23.7    
Relizane Algeria -23.6    
Mariupol Ukraine -23.3    
Warangal India -23.0    
Balaghat India -22.6    

Sterlitamak 
Russian 
Federation -22.3    

Janesville United States -22.2    
Eskisehir Türkiye -22.1    
Champaign United States -21.3    
Cape Town South Africa -21.2    
Middelburg South Africa -21.2    
Maumere Indonesia -21.1    

Behbahan 
Iran, Islamic 
Rep. -21.0    

Rustenburg South Africa -20.8    
Katowice Poland -20.5    

Saint Petersburg 
Russian 
Federation -20.3    

Iloilo City Philippines -19.1    
Athens Greece -19.0    
Melbourne Australia -18.9    
Guadalajara Mexico -18.8    
Nicosia Cyprus -18.8    
Rajgarh India -17.5    
Sherbrooke Canada -16.8    
La Rochelle France -16.7    
St. Louis United States -16.7    
Lafayette United States -16.4    
Buenos Aires Argentina -16.1    
Rajkot India -15.8    
Muzaffarpur India -15.0    
Madrid Spain -14.8    
Dhaka Bangladesh -13.4    
Saveh Iran -12.0 
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Table 9:  Trends by region * 

 Trend  

Region Decrease Increase Total 

Africa 8 2 10 

 (13.6) (8.3) (12.1) 

Americas 14 8 22 

 (23.7) (33.3) (26.5) 

Asia 20 9 29 

 (33.9) (37.5) (34.9) 

Europe 16 5 21 

 (27.1) (20.8) (25.3) 

Oceania 1 0 1 

 (1.7) (0.0) (1.2) 

Total 59 24 83 

 (71.1%) (28.9%)  

* Column percents in parentheses 

Table 10:  FUAs, 2019 deviations from 5-year means, 2015-2019* 

Dependent variable:  Local CO2 Anomaly (ppm) 

 2019 Deviation  

Significance Level Negative Positive Total 

Not Significant 446 401 847 

   .05 71 56 127 

   .01 42 29 71 

  .001 16 11 27 
    Total Significant 129 96 225 

    

               Total 575 497 1,072 

*  FUAs with degrees of freedom ≥ 30 

 
Table 11:  FUAs, 2021 deviations from 5-year means, 2017-2021* 

Dependent variable:  Local CO2 Anomaly (ppm) 

 2021 Deviation  

Significance Level Negative Positive Total 

Not Significant 418 431 849 

   .05 76 70 146 

   .01 37 25 62 

  .001 15 12 27 
    Total Significant 128 107 235 

    

               Total 546 538 1,084 

*  FUAs with degrees of freedom ≥ 30 
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Figure 4:  Monthly local concentration anomalies, 2017 - 2021 (ppm) 

                            Negative Deviation                                                           Positive Deviation 

   p≤.001              Warsaw, Poland                                                        Orlando, United States 

 

 

 

 

 

 

 

 

 

.01<p≤.05            Hengyang, China                                                               Mumbai, India 

 

 

 

 

 

 

 

 

 
Not Significant  Casablanca, Morocco                       Bukhara, Uzbekistan   

(t≈1.0)                                                                 
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5.7 Short-Period Changes: Accounting for Atmospheric Circulation 

We introduce atmospheric circulation effects using the inside/outside methodology that we have 

applied to annual trend estimation.  Table 12 provides regional summaries for qualifying urban areas 

with populations greater than 100,000 that have significant short-period changes and absence of 

atmospheric circulation effects.  Regional representation remains roughly stable in the two periods, 

with the possible exception of Europe.   

Tables 13 and 14 display qualifying urban areas for 2015-2019 and 2017-2021, with both decreases 

and increases displayed in descending order by absolute value. Percent changes are calculated from 

regression-predicted values for the first and final years.  Among the 31 represented countries, 16 

appear in only one table and 15 in both.  United States urban areas are most numerous in both tables 

(13 and 12 respectively), followed by China (8 and 7) and France (5 and 3).  Figures 5 and 6 map the 

same cities and identify their change status. 

Of the 100 cities represented in Tables 13 and 14, 6 appear in both periods.  Table 15 shows that 

Melbourne, Madrid, La Rochelle and Fayetteville have consistent decreases, while Greensboro and 

Warsaw switch from increases in 2015-19 to decreases in 2017-21.  

 

Table 12:  Regional representation of urban areas without atmospheric circulation effects 

 

 

 

 

 

 

 

 

 

 

 

  

 2015-19 2017-21 

Region Count Percent Count Percent 

Africa 2 3.5 2 3.9 

Americas 18 31.6 18 35.3 

Asia 15 26.3 15 29.4 

Europe 21 36.8 15 29.4 

Oceania 1 1.8 1 2.0 

     

Total 57 100 51 100 
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Table 13:  2019 Deviation from 5-Year mean concentration anomaly, 2015 – 2019  

                  (population ≥ 100,000;  p ≤ .01; atmospheric circulation effects absent) 

 

 

 

  

City Country % Change City Country % Change 

Montevideo Uruguay -53.2 Las Cruces United States 63.5 

Yekaterinburg 
Russian 
Federation -43.1 Quebec Canada 62.4 

Lipetsk 
Russian 
Federation -35.5 Pune India 48.0 

Simferopol Ukraine -32.1 Xi'an China 43.6 

Lawrence United States -24.9 San Antonio United States 42.9 

Minsk Belarus -23.8 Bayannur China 36.8 

Bydgoszcz Poland -22.3 Sora-myeon Korea, Rep. 36.2 

Debrecen Hungary -21.5 Lorient France 34.5 

Boston United States -20.7 Kunming China 31.7 

Acapulco Mexico -20.6 Saarbruecken Germany 31.0 

Grand Rapids United States -20.0 Rockford United States 30.5 

Fayetteville United States -19.2 Bellingham United States 30.5 

Coimbra Portugal -17.7 Bojnurd Iran, Islamic Rep. 28.0 

Hohhot China -17.5 Sioux City United States 27.8 

Fula'erji China -17.4 Greensboro United States 21.8 

Aarhus Denmark -17.0 Fenyang China 21.4 

Pindi Gheb Pakistan -16.6 Khemis Miliana Algeria 20.5 

Nantes France -16.6 Suzhou China 19.9 

La Rochelle France -15.3 Quetta Pakistan 18.5 

Barcelona Spain -14.9 Pratapgarh India 18.1 

Kryvyi Rih Ukraine -14.9 Waterloo United States 17.7 

Madrid Spain -14.7 Warsaw Poland 17.7 

Orléans France -14.5 Seville Spain 13.9 

Sherbrooke Canada -13.8 Birmingham United States 11.8 

Buenos Aires Argentina -13.8 Port Elizabeth South Africa 11.7 

Berlin Germany -13.1    

Eskisehir Türkiye -12.7    

Bordeaux France -11.9    

Da'an China -11.4    

Melbourne Australia -9.4    
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Table 14:  2021 Deviation from 5-year mean concentration anomaly, 2019 – 2021  

                 (population ≥ 100,000;  p ≤ .01; atmospheric circulation effects absent) 

 

 

 

 

 

  

City Country % Change City Country % Change 

Warsaw Poland -37.9 Baoshan China 62.2 

Brescia Italy -34.9 Kemerovo 
Russian 
Federation 42.5 

Le Tampon Reunion -30.7 Chiplun India 36.7 

Ogden United States -30.7 Besançon France 35.3 

Sevastopol Ukraine -30.4 Konch India 32.5 

Jakarta Indonesia -29.1 Canton United States 29.9 

Trier Germany -28.7 Daegu Korea, Rep. 29.9 

Dajie China -28.2 Poyang China 29.4 

Dayton United States -25.7 Murcia Spain 28.6 

Sheyang China -24.1 Kenitra Morocco 26.5 

Bursa Türkiye -23.3 Orlando United States 24.2 

Fayetteville United States -22.0 Adiyaman Türkiye 23.0 

Greensboro United States -20.5 Ardakan 
Iran, Islamic 
Rep. 22.1 

Washington D.C. United States -18.8 Hamburg Germany 21.5 

Daytona Beach United States -18.5 Anápolis Brazil 20.6 

San Luis Potosí Mexico -18.5 Copenhagen Denmark 18.2 

Ciudad Acuña Mexico -18.4 Toulon France 18.2 

Havana Cuba -17.8 Novorossiysk 
Russia 
Federation 17.3 

Karlsruhe Germany -17.1 Hangyulu China 15.9 

McAllen United States -15.6 Salmas 
Iran, Islamic 
Rep. 15.7 

La Rochelle France -14.9 Belo Horizonte Brazil 14.9 

Madrid Spain -14.7 Jacksonville United States 14.8 

Melbourne Australia -14.7 Liaoyuan China 13.1 

Zagreb Croatia -14.1 New York United States 13.0 

Seattle United States -12.6    

Guangzhou China -11.7    

Guadalajara Mexico -10.8    
 



 

 
 

Figure 5:  Functional Urban Areas:  Local concentration anomalies, 2019 deviations from 5-year means 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

Figure 6:  Functional Urban Areas:  Local concentration anomalies, 2021 deviations from 5-year means 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 
 

 

 

 

 

 

 

 

6.  Estimating Urban Emissions 
 
Our econometric analysis also enables estimation of emissions levels for selected regions or local areas.  
In our approach, emissions levels have two components.  The first, predicted by our econometric 
model, is the expected value of emissions from an area, given its industry structure, fire occurrences, 
population, income per capita, climate and mass transit infrastructure.  The second component is the 
deviation from a city’s expected value measured by its regression residual.  Negative deviations identify 
areas whose emissions are lower than expected, while positive deviations identify areas with higher-
than-expected emissions.  
 
For both components, atmospheric concentration measures can be converted to estimated emissions 
with exogenous information that provides measurement benchmarks.  For the computation of 
expected values, we employ standard global emissions estimates.  For the translation of regression 
residuals to emissions deviations, we use the EDGAR gridded database of CO2 emissions estimated 
from sectoral activity data and standard emissions parameters (Crippa et al. 2020).   
 

6.1 Mapping Global CO2 Emissions  
 
Our econometric exercise measures marginal effects on atmospheric concentration anomalies from 
CO2 emissions by industry, fires, and non-industrial population-related sources. Concentration 
anomalies are measured in parts per billion; we convert to emissions volumes using a global adjustment. 
With 2019 as the benchmark year, Ritchie and Roser (2020) estimate global CO2 emissions of 35.4 
gigatons (Gt) from fossil fuels and industrial sources. Bailis et al. (2015) estimate global CO2 emissions 
of 1.1 Gt from traditional woodfuels that are still used for heating in many locations. Adding the two 
yields a total estimate (GCO2) of 36.5 Gt.   
 
Using the estimated model coefficients in Table 1, we predict industry- and population-related 
concentration anomalies for each of the 266,884 grid cells in our global database. The industry 
component (ICO2) for each cell is the sum of predicted effects for industry emissions in the cell and 
wind-displaced industry emissions from neighboring cells. The population component (PCO2) is the 
sum of predicted effects for heating degree days, cooling degree days, and income per capita, adjusted 
by the subway impact multiplier. We sum across cells to produce the global aggregate concentration 
anomaly:   
 

Table 15:  Deviations from five-year means  

  Percent Deviation 

City Country 2015-19 2017-21 

Greensboro United States 21.78 -20.46 

Warsaw Poland 17.66 -37.90 

Melbourne Australia -9.38 -14.70 

Madrid Spain -14.72 -14.70 

La Rochelle France -15.25 -14.89 

Fayetteville United States -19.15 -22.01 

 



 

29 
 

(2) 𝑇𝐶𝑂2 = ∑ (𝐼𝐶𝑂2𝑖 +266,884
𝑖 𝑃𝐶𝑂2𝑖). 

 
We obtain the global conversion factor, as follows: 
 

(3) 𝑔𝑐 =
𝐺𝐶𝑂2

𝑇𝐶𝑂2
= 563.6. 

 
The conversion factor, gc, is dimensioned as tons of CO2 emissions per 1 part per billion of 
concentration anomaly. 
 
Fires CO2 emissions for each cell are drawn from Van der Werf et al. (2017). These are gross emissions 
rather than estimated net emissions from land-use change that incorporate both carbon-emitting 
conversions (e.g., from forest to cropland) and carbon-absorbing conversions (e.g., from pasture to 
forest).18  
 
Using the econometric results in Table 1, Figure 7 maps the predicted global distribution of CO2 
emissions using grid cell sums of estimated industry-related emissions (gc * ICO2i), population-related 
emissions (gc * PCO2i), and fires emissions from Van der Werf et al. (2017). The figure displays mean 
annual emissions for 2014–21, highlighting the roles of the United States, Europe, China, and the 
forested regions of South America, Central Africa, and Southeast Asia. 
 
The map illustrates the potential of satellite-based observations for CO2 emissions monitoring at 
regional, national, and local scales. Until now, observation-based estimates of CO2 emissions by source 
from every location on the globe have simply not been available.  
 

6.2 Emissions from Functional Urban Areas 
 

Using the data described in Section 6.1, we estimate emissions from urban areas by aggregating 

estimates for grid cells within each Functional Urban Area.  These can be viewed as expected emissions 

values for FUAs, given their characteristics.  In reality, the impacts of different policies, individual 

economic decisions and more fine-grained structural factors will cause FUAs to deviate from their 

expected values.  These deviations should be reflected in the residual concentration anomalies from 

estimation of model (1).   

We translate these residuals to emissions using the EDGAR global database of gridded CO2 emissions 

estimated from local activity measures and standard emissions parameters (Crippa et al. 2020).  The 

current EDGAR database terminates in 2018, so we perform the conversion using data for 2015 – 

2018, the period of overlap with our OCO-2 database. 

 
18  For detailed assessments of net carbon emissions from land-use change, see Gasser et al. (2020) and Winkler et al. 
(2021). 



 

 
 

Figure 7:  Mean annual CO2 emissions, 2014-2021 

                 (‘000 tons/year) 

     Global grid, 25 x 25 km  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 
 

After aggregating EDGAR emissions for the grid cells within each FUA, we estimate a regression 

model that relates annual EDGAR emissions to annual local concentration anomalies for 5,991 FUAs. 

The result, report in Table 16, is highly significant and indicates that 1 ppb of the local concentration 

anomaly for an FUA is associated with 394 tons of CO2 emissions.  The R2 in this case is extremely 

small, because the “noise” (random variation) in the local anomaly measure is much larger than the 

“signal” associated with local emissions.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 17 applies the results in Table 16 to the regression residuals from model (1), converting the 

residuals to deviations from expected emissions.  After ranking urban areas by estimated CO2 

emissions, Table 17 presents the top-40 positive and negative cases.  For each urban area, we express 

the emissions deviation as a percent of emissions.  Among the cities with emissions above expected 

levels (positive deviations), 3 of the cities with deviations greater than 10% are in China (Fuzhou, 

Jieyang, Xinxiang) and 3 are in the United States (Los Angeles, Seattle, Phoenix), along with Tehran, 

Islamic Republic of Iran.  Two cities have emissions that are 10% or more below expected levels:  

Buenos Aires, Argentina and Indianapolis, United States.  

 

 

  

Table 16:  Regression results:  EDGAR emissions vs. local CO2 anomalies 
     (‘000 tons CO2) 

  Dependent variable:  EDGAR FUA Emissions (‘000 tons) 

  
Local Concentration Anomaly 0.394*** 

   (ppb) (8.88) 

  
Const 3023.2*** 

 (37.42) 

  
R2: 0.003 

N 23,964a 

 
a 5,991 FUAs x 4 years 

t statistics in parentheses  

* p<0.05  ** p<0.01  *** p<0.001   

 

 

 

 

 

 

 

 

 

t statistics in parentheses 

* p<0.05  ** p<0.01  *** p<0.001   
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Table 17:  FUAs : Estimated and residual-adjusted CO2 emissions, 2015-2021 

FUA Country 
Pop 

(Mill.) 
CO2 

(‘000 tons) 

Residual 
Adjustment 
(‘000 tons) 

Pct. 
Diff. FUA Country 

Pop 
(Mill.) 

CO2 
(‘000 tons) 

Residual 
Adjustment 
(‘000 tons) 

Pct. 
Diff.  

Tokyo Japan 36.5 196,161.8 413.8 0.2 New York United States 19.5 193,858.0 -733.8 -0.4 

Guangzhou China 45.6 120,382.1 3,302.1 2.7 Chicago United States 8.8 124,360.9 -3,374.6 -2.7 

Houston United States 6.4 95,739.5 2,662.9 2.8 Dortmund Germany 5.8 119,878.6 -1,199.2 -1.0 

Osaka [Kyoto] Japan 17.6 93,117.5 5,634.8 6.1 Beijing China 21.3 107,335.0 -516.3 -0.5 

Dallas United States 7.1 90,937.4 1,251.4 1.4 Moscow 
Russian 
Federation 16.4 91,197.3 -4,426.3 -4.9 

Shanghai China 26.9 90,440.7 1,030.6 1.1 Shenyang China 6.2 88,373.1 -2,071.9 -2.3 

Nagoya Japan 9.6 88,495.9 1,297.1 1.5 Minneapolis  United States 3.3 73,577.9 -3,712.0 -5.0 

Seoul Korea, Rep. 24.3 87,532.2 5,561.7 6.4 Tianjin China 8.3 65,981.3 -1,639.8 -2.5 

Los Angeles United States 15.7 86,961.0 14,602.3 16.8 Toronto Canada 7.3 65,881.2 -42.1 -0.1 

Philadelphia United States 6.1 75,752.3 2,045.5 2.7 Changchun China 3.9 65,726.8 -905.5 -1.4 

Suzhou China 12.0 70,628.8 4,966.9 7.0 Detroit United States 4.1 64,425.6 -2,189.8 -3.4 

Zibo China 3.7 61,212.4 2,131.1 3.5 Paris France 11.2 63,338.8 -106.7 -0.2 

Tangshan China 2.4 55,119.2 914.2 1.7 London United Kingdom 12.6 61,295.3 -487.9 -0.8 

Frankfurt  Germany 3.0 53,977.1 1,123.3 2.1 Atlanta United States 5.6 56,993.9 -308.2 -0.5 

Hangzhou China 9.6 50,879.0 287.2 0.6 Buenos Aires Argentina 15.0 56,823.6 -11,623.6 -20.5 

Cologne Germany 3.2 48,279.0 967.8 2.0 Pittsburgh United States 2.0 55,276.0 -1,434.9 -2.6 

Nanjing China 7.0 46,221.0 443.5 1.0 Washington D.C. United States 5.6 52,849.9 -6.5 0.0 

Seattle United States 3.9 44,020.1 11,492.8 26.1 Chongqing China 6.0 48,684.5 -128.2 -0.3 

Jieyang China 12.7 43,030.7 6,067.3 14.1 Istanbul Türkiye 14.8 48,503.2 -2,787.3 -5.7 

St. Louis United States 2.5 41,553.7 845.4 2.0 Manchester United Kingdom 3.3 46,283.0 -995.3 -2.2 

Xinxiang China 2.0 41,235.6 6,808.5 16.5 Wuhan China 8.5 44,688.5 -133.2 -0.3 

Linyi China 2.7 40,904.7 1,467.1 3.6 Chengdu China 11.8 43,597.9 -233.4 -0.5 

Baotou China 2.2 39,042.1 9.6 0.0 Katowice Poland 2.9 42,871.1 -1,416.6 -3.3 

Phoenix United States 4.6 38,373.2 10,464.9 27.3 Cincinnati United States 1.9 42,699.9 -1,411.9 -3.3 

Zurich Switzerland 2.1 37,236.9 2,959.0 7.9 Milan Italy 5.1 42,150.6 -547.7 -1.3 

Jiaxing China 2.5 36,774.3 909.3 2.5 Jakarta Indonesia 39.8 42,132.0 -2,002.2 -4.8 

Stuttgart Germany 2.2 36,360.4 578.8 1.6 Leeds United Kingdom 2.9 42,104.2 -126.2 -0.3 

Taizhou China 4.3 36,250.8 2,840.4 7.8 Tianjiaan China 1.6 39,360.5 -295.1 -0.7 

Kansas City United States 2.0 36,002.6 816.3 2.3 Birmingham United Kingdom 3.0 39,274.5 -626.4 -1.6 

Portland United States 2.5 35,873.0 1,558.2 4.3 Montreal Canada 4.1 38,871.5 -1,135.7 -2.9 

Charlotte United States 2.0 35,542.7 712.4 2.0 Melbourne Australia 4.5 37,527.0 -309.4 -0.8 

Antwerp Belgium 1.8 33,139.5 303.5 0.9 Wuhu China 1.4 36,490.7 -288.7 -0.8 

Cixi China 3.2 32,973.4 705.7 2.1 Columbus United States 2.2 35,512.3 -1,817.0 -5.1 

Mannheim Germany 1.7 32,856.3 652.7 2.0 Datong China 1.7 33,693.9 -83.5 -0.2 

Tehran 
Iran, Islamic 
Rep. 13.4 32,587.6 4,074.3 12.5 Indianapolis United States 1.9 32,981.6 -3,622.0 -11.0 

Shijiazhuang China 4.2 32,380.4 1,582.2 4.9 Louisville United States 1.3 32,821.3 -1,701.7 -5.2 

Zhangjiagang China 1.5 32,326.6 152.1 0.5 Jilin China 1.7 32,262.6 -1,166.0 -3.6 

Luoyang China 2.4 32,214.0 1,089.7 3.4 San Antonio United States 2.2 29,828.8 -836.8 -2.8 

Fuzhou China 4.8 32,204.2 3,420.4 10.6 Warsaw Poland 2.9 28,431.0 -1,221.1 -4.3 

Anshan China 1.9 32,134.5 66.0 0.2 Harbin China 4.6 28,378.2 -1,209.2 -4.3 

 

 

  



 

 
 

Table 18 summarizes our adjustment results for 1,306 Functional Urban Areas with populations 

greater than 500,000.  It tabulates percent deviations by range for urban areas with higher- and lower- 

than-expected emissions.  The table reveals the frequency of relatively large deviations in both 

categories, with the representation of higher-percent ranges significantly greater for urban areas with 

lower-than-expected emissions. 

  

Table 18:  FUAs: Distribution of Percent Deviations 

                   by Performance Category 

    

 

Emissions Relative to 

Expected Value  

% Deviation Lower Higher Total 

    
0-1 64 52 116 

 9.28 8.44 8.88 

    
1-5 120 150 270 

 17.39 24.35 20.67 

    
5-10 91 104 195 

 13.19 16.88 14.93 

    
10-20 123 123 246 

 17.83 19.97 18.84 

    
20-50 151 98 249 

 21.88 15.91 19.07 

    
50+ 141 89 230 

 20.43 14.45 17.61 

    
Total 690 616 1,306 
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7.  Summary and Conclusions 

This paper has extended recent research on satellite-based CO2 measurement to an easily-updated 

template for tracking changes in CO2 concentration anomalies at local and regional scales.  Using 

observations from NASA’s OCO-2 platform, we develop the template from the data filtering 

techniques and econometric analysis employed by Dasgupta, Lall and Wheeler (2022).  For a large 

sample of urban areas, we compare alternative trend estimation models and conclude that the template 

can be constructed from a simple model that estimates trends directly from OCO-2 data that are pre-

filtered to isolate local concentration anomalies.  We also investigate the impact of regional 

atmospheric circulation on local changes and develop a methodology for identifying urban areas 

whose changes are independent of regional circulation effects.  We present illustrative applications for 

a long-period trend model and a short-period model that focuses on changes in the most recent year.  

In both cases we find striking patterns of variation, across regions, within regions, and over time. 

We also use our estimation results to compute expected emissions for a large number of urban areas.  

Then we convert the regression residuals to emissions deviations using information from the EDGAR 

global database of estimated CO2 emissions.  This enables us to quantify the extent to which urban 

emissions are greater or less than their expected values. Among 1,306 urban areas with populations 

greater than 500,000, we find a rough balance between cities with positive and negative emissions 

deviations.  In the distribution of percent deviations, we find typically-higher deviations among cities 

whose emissions are below their expected values.  

We conclude with an acknowledgment that even “simple” trend tracking and emissions estimation 

require software and hardware that are beyond the means of many interested stakeholders.  For this 

reason, the World Bank’s Development Economics Vice Presidency (DEC) has established an open 

web facility, the XCO2 database,19 that pre-filters the OCO-2 data and publishes monthly mean 

concentration anomalies for all terrestrial cells of a 25 km global grid (G25).  The website will also 

publish annual change estimates for urban areas by statistical significance class and provide 

information that links G25 grid cell IDs to IDs for urban areas and national administrative units (levels 

0, 1 and 2).  We believe that this web facility will contribute to the global effort to reduce CO2 

emissions as rapidly as possible.  We provide more details in the Appendix. 

  

 
19 Available online at https://datacatalog.worldbank.org/search/dataset/0062760. 
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Appendix:  Mobilizing OCO-2 Data for the Stakeholder Community  

In this paper, we have shown that a relatively simple tracking model can provide useful information 

about changes in local CO2 concentration anomalies for areas of interest.  However, we recognize that 

most stakeholders do not have the requisite hardware and software for mobilizing the OCO-2 data 

directly.  Accordingly, the World Bank’s Development Economics Vice Presidency (DEC) has 

established an open web facility with the following features.  We believe that it will contribute to the 

global effort to reduce CO2 emissions. 

• The XCO2 database (https://datacatalog.worldbank.org/search/dataset/0062760), an OCO-

2 panel database for a 25 km grid (G25), in Stata format, beginning in September 2014 and 

updated regularly.  The database includes G25 grid cell ID numbers, cell centroid coordinates, 

monthly means of measured CO2 concentrations, and monthly means of Hakkarainen pre-

filtered CO2 concentration anomalies.  The JPL/NASA database publishes OCO-2 data with 

a lag of approximately two months. 

• For functional urban areas (FUAs) with sufficient data, annually-updated change parameter 

estimates for models (6) and (7), with statistical significance categories [p>.05, ≤.05, ≤.01, 

≤.001].    

•  Stata files that match G25 grid cell ID numbers for: 

• Functional urban areas (ID numbers from Schiavina et al. (2019)); 

• National level 0, 1 and 2 administrative areas (World Bank GADM (2021)). 

 

 

 


